Cancer classification using gene expression data
نویسندگان
چکیده
The classification of different tumor types is of great importance in cancer diagnosis and drug discovery. However, most previous cancer classification studies are clinical-based and have limited diagnostic ability. Cancer classification using gene expression data is known to contain the keys for addressing the fundamental problems relating to cancer diagnosis and drug discovery. The recent advent of DNA microarray technique has made simultaneous monitoring of thousands of gene expressions possible. With this abundance of gene expression data, researchers have started to explore the possibilities of cancer classification using gene expression data. Quite a number of methods have been proposed in recent years with promising results. But there are still a lot of issues which need to be addressed and understood. In order to gain deep insight into the cancer classification problem, it is necessary to take a closer look at the problem, the proposed solutions and the related issues all together. In this survey paper, we present a comprehensive overview of various proposed cancer classification methods and evaluate them based on their computation time, classification accuracy and ability to reveal biologically meaningful gene information. We also introduce and evaluate various proposed gene selection methods which we believe should be an integral preprocessing step for cancer classification. In order to obtain a full picture of cancer classification, we also discuss several issues related to cancer classification, including the biological significance vs. statistical significance of a cancer classifier, the asymmetrical classification errors for cancer classifiers, and the gene contamination problem.
منابع مشابه
Classification and Biomarker Genes Selection for Cancer Gene Expression Data Using Random Forest
Background & objective: Microarray and next generation sequencing (NGS) data are the important sources to find helpful molecular patterns. Also, the great number of gene expression data increases the challenge of how to identify the biomarkers associated with cancer. The random forest (RF) is used to effectively analyze the problems of large-p and smal...
متن کاملFeature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملPrediction of blood cancer using leukemia gene expression data and sparsity-based gene selection methods
Background: DNA microarray is a useful technology that simultaneously assesses the expression of thousands of genes. It can be utilized for the detection of cancer types and cancer biomarkers. This study aimed to predict blood cancer using leukemia gene expression data and a robust ℓ2,p-norm sparsity-based gene selection method. Materials and Methods: In this descriptive study, the microarray ...
متن کاملSFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy
In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....
متن کاملخوشهبندی دادههای بیانژنی توسط عدم تشابه جنگل تصادفی
Background: The clustering of gene expression data plays an important role in the diagnosis and treatment of cancer. These kinds of data are typically involve in a large number of variables (genes), in comparison with number of samples (patients). Many clustering methods have been built based on the dissimilarity among observations that are calculated by a distance function. As increa...
متن کاملModification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Syst.
دوره 28 شماره
صفحات -
تاریخ انتشار 2003